The Representations of the G-Drazin Inverse in a Banach Algebra

نویسندگان

چکیده

The aim of this paper is to establish an explicit representation the generalized Drazin inverse $(a+b)^d$ under condition $$ab^2=0, ba^2=0, a^{\pi}b^{\pi}(ba)^2=0.$$ Furthermore, we apply our results give some for a $2\times 2$ block operator matrix. These extend on Bu, Feng and Bai [Appl. Math. Comput. 218, 10226-10237, 2012] Dopazo Martinez-Serano [Linear Algebra Appl. 432, 1896-1904, 2010].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations for the Generalized Drazin Inverse in a Banach Algebra (communicated by Fuad Kittaneh)

The Drazin inverse has important applications in matrix theory and fields such as statistics, probability, linear systems theory, differential and difference equations, Markov chains, and control theory ([1, 2, 11]). In [9], Koliha extended the Drazin invertibility in the setting of Banach algebras with applications to bounded linear operators on a Banach space. In this paper, Koliha was able t...

متن کامل

Representations for the Generalized Drazin Inverse of the Sum in a Banach Algebra and Its Application for Some Operator Matrices

We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix.

متن کامل

Expressions for the generalized Drazin inverse of a block matrix in a Banach algebra

We present some new representations for the generalized Drazin inverse of a block matrix with generalized Schur complement being generalized Drazin invertible in a Banach algebra under conditions weaker than those used in recent papers on the subject.

متن کامل

Group Inverse and Generalized Drazin Inverse of Block Matrices in a Banach Algebra

Let A be a complex unital Banach algebra with unit 1. The sets of all invertible and quasinilpotent elements (σ(a) = {0}) of A will be denoted by A and A, respectively. The group inverse of a ∈ A is the unique element a ∈ A which satisfies aaa = a, aaa = a, aa = aa. If the group inverse of a exists, a is group invertible. Denote by A the set of all group invertible elements of A. The generalize...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe journal of mathematics and statistics

سال: 2021

ISSN: ['1303-5010']

DOI: https://doi.org/10.15672/hujms.754006